What is smart dust and how is it used?
Imagine a cloud of sensors, each the size of a grain of sand or even smaller, blown aloft by hurricane winds and relaying data on the storm to weather stations below.
Picture an invisible sensor network embedded into a smart city’s roads to monitor traffic, road surface damage and identify available parking spaces – all in real time. Or billions of nanosensors distributed over forests and other areas with fire hazards to detect a fire at its very beginning. Or envision programmable smart dust that triggers an alarm signal when invisible microcracks are detected in a turbine blade.
Smart dust refers to wireless networks of sub-millimeter-scale autonomous computing and sensing platforms not larger than a grain of sand. Smart dust senses and records data about its environment such as light, temperature, sound, presence of toxins or vibrations, and transmits that data wirelessly to larger computer systems.
Smart dust is a vision of the networked future where intelligent networks of trillions of miniscule sensors continuously feel, taste, smell, see, and hear what is going on in their surrounding environment, communicate with each other and exchange information. Smart dust networks are the ultimate Internet-of-Things (IoT) devices.
Smart dust is revolutionary because the sensors are small enough to be put anywhere, even in narrow and difficult areas. Another huge advantage is that these devices work without any human intervention as they are pre-programmed and, notwithstanding their tiny size, have their own power supply.
This technology is expected to not only monitor building controls, pipelines, factory equipment and drug-making processes, but it will also lead to ubiquitous autonomous artificial intelligent computation near the end user, such as authentication, medical procedures and health care monitoring, sensing and tracking, industrial and supply chain monitoring, and defense applications.
Although smart dust devices are not quite in dust-size territory, researchers hope to shrink these devices to the size of a speck of dust via nanotechnology.
To be economically feasible, such single-use devices have to be cheap (we are talking pennies or even fractions of a penny), even cheaper than the radio-frequency identification tags currently used to track the inventory of warehouses, for example.
How does smart dust work and what does it do?
Smart dust networks contain nodes (called ‘mote’) that combine sensing, computing, wireless communication capabilities and autonomous power supply in a tiny package with a volume of few cubic millimeters or even less.
Smart dust is based on microelectromechanical systems, or MEMS. MEMS consist of any combination of mechanical (levers, springs, membranes, etc.) and electrical (resistors, capacitors, inductors, etc.) components to work as sensors or actuators. In the future, as fabrication technologies advance, this will shrink further down in size to NEMS – nanoelectromechanical systems.
Motes are constructed using conventional silicon microfabrication techniques and can remain suspended in an environment similar to dust (hence the name).
Each mote can be left unattended to collect environmental data such as light, temperature, pressure, vibrations, the existence of toxins, etc., and transmit this data wirelessly to larger, remote computer systems – or, depending on the mote's computing power, processes it directly at the point of data collection.
For instance, in an industrial setting, smart dust sensors relay signals back to a command computer, which then compiles the data to give feedback to plant managers. Or the results could trigger an automatic response, such as turning down a building's temperature or reducing the flow of water.
Another example is DARPA's SHIELD program that plans to use microscale chips to track and authenticate the supply chain of computer chips for defense applications. The goal is to eliminate counterfeit integrated circuits from the electronics supply chain by making counterfeiting too complex and time-consuming to be cost effective. SHIELD aims to combine NSA-level encryption, sensors, near-field power and communications into a tiny chip capable of being inserted into the packaging of an integrated circuit.
Origin of the smart dust concept
‘Smart Dust’ was first conceived in the 1990s by Dr. Kris Pister while a professor of electrical engineering at the University of California, Berkeley, as a simple way to deploy intelligent wireless sensors.
At the time, Pister imagined a world in which ubiquitous sensors could measure everything that could be measured. Immediately, he thought about environmental applications such as weather tracking (read his concept paper from 2000: Emerging challenges: Mobile networking for “Smart Dust”).
But it doesn’t come as a surprise that it was the military that gave the impetus, and financing, for developing smart dust. In 1992, DARPA funded Pister’s research in the Smart Dust project (you can read the original proposal here as PDF).
Go paid at the $5 a month level, and we will send you both the PDF and e-Pub versions of “Government” - The Biggest Scam in History… Exposed! and a coupon code for 10% off anything in the Government-Scam.com/Store.
Go paid at the $50 a year level, and we will send you a free paperback edition of Etienne’s book “Government” - The Biggest Scam in History… Exposed! AND a 64GB Liberator flash drive if you live in the US. If you are international, we will give you a $10 credit towards shipping if you agree to pay the remainder.
Support us at the $250 Founding Member Level and get a signed high-resolution hardcover of “Government” + Liberator flash drive + Larken Rose’s The Most Dangerous Superstition + Art of Liberty Foundation Stickers delivered anywhere in the world. Our only option for signed copies besides catching Etienne @ an event.
I don't think smart dust is good for our lungs.
Unfortunately Smart dust is alresdy everywhere.
Check out Sabrina Wallace on Odyssey or nonaxer420 on Rumble.